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Abstract

As datasets grow increasingly high-dimensional and complex, distinguishing a
condensed set of interpretable underlying factors becomes essential. In spatial
omics, for example, hundreds to thousands of molecular features per observation
promise unprecedented biological insight. However, without meaningful latent
representations, that potential remains markedly untapped. We propose a new
approach based on the beta-variational autoencoder and kernel density estimation
to dissect data along independent, uncertainty-aware, and interpretable (yet non-
linear) latent axes. We include a novel comparative-latent-traversal algorithm to
translate latent findings back into the original measurement context. Demonstrat-
ing on imaging mass spectrometry-based molecular imaging of human kidney, the
approach’s disentangling properties are shown to impress a latent space structure
that separates signal strength from relative signal content, offering exceptional
chemical insight. Our approach uncovers unexpected subdivisions within kid-
ney proximal tubules, confirmed to be biological, and reveals hereto-unknown
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lipid species differentiating them. This confirms our workflow’s potential as an
interpretation-and-hypothesis-generating discovery tool.

Keywords: structured latent space, beta-variational autoencoder, generative model,
comparative latent traversal, interpretability, molecular imaging, imaging mass
spectrometry, human kidney, machine learning.

1 Introduction

Spatial biology technologies are advancing rapidly, enabling deeper molecular coverage
with ever-greater resolution and yielding data of unprecedented molecular and spatial
specificity. By capturing molecular relationships down to cellular resolution, these large
multidimensional datasets offer deep insights into biological systems. However, their
complexity makes deciphering underlying patterns challenging, particularly consider-
ing nonlinear relationships. To leverage the full potential of these intricate datasets,
new methods are needed to discover and, more importantly, interpret the relationships
underlying the measurements. Placing such findings in the original measurement con-
text is essential to understanding the driving biology behind them. Here, we introduce
a workflow specifically designed to uncover a generative mechanism underlying the
data, thereby facilitating human interpretation. We demonstrate the effectiveness of
this approach in molecular imaging, a field characterized by complex, high-dimensional
data. Specifically, we apply our method to imaging mass spectrometry (IMS) [1,2],
a highly multiplexed modality, used for untargeted molecular mapping of human tis-
sue. As a spatial omics technology, IMS acquires mass spectra pixel-by-pixel across a
sample surface. A single experiment maps the tissue-wide abundance of hundreds to
thousands of endogenous molecules (e.g., metabolites, lipids, glycans, proteins) simul-
taneously, without requiring prior chemical labeling. The ability of our approach to
reveal nuanced structure within IMS data can help drive discovery of biomolecular
pathways active in disease, reveal patient-specific insights for precision medicine, and
offer a novel automated means of hypothesis-generation for biomedical research.

Dimensionality reduction methods have become the norm for overcoming the
complexity of multidimensional data, mapping the variation of high-dimensional mea-
surements into a lower-dimensional latent space. Capturing underlying patterns in
data is critical to many areas, from satellite-based remote sensing [3] and industrial
process monitoring [4] to transcriptomics [5] and climate science [6]. However, it is
often difficult to link observations in the low-dimensional representation to specific
features of the measurements. Nevertheless, the ability to map latent space features
back into the original measurement space is essential to aiding interpretation. Lin-
ear methods such as principal component analysis (PCA) [7–10] and non-negative
matrix factorization (NMF) [11,12] implicitly deliver such an approximate inverse
mapping, facilitating direct interpretation. However, many relationships underlying
high-dimensional molecular data are not necessarily linear and cannot be captured
accurately by such relatively basic models. Therefore, nonlinear mappings into a latent
space are needed, as with t-distributed stochastic neighbor embedding (t-SNE) [13]
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or uniform manifold approximation and projection (UMAP) [14,15]. Unfortunately,
inverting from a nonlinear latent space to reveal corresponding variation in the mea-
surement space is much less straightforward and sometimes impossible. In biomedical
research, omics measurements using transcriptomics or mass spectrometry routinely
report hundreds to thousands of molecular features per observation. While such deep
characterizations promise unprecedented insight into biological processes and molecu-
lar phenotypes, part of that potential remains untapped unless meaningful information
can be extracted from latent representations of the data. Specifically, latent space
axes should ideally capture biologically relevant aspects, e.g., variation distinguishing
cell types, cellular niches, or healthy-versus-diseased tissue, or report molecular abun-
dance. It also requires a method that, after capturing nonlinear relationships in a latent
form, allows them to be mapped back to the measurement space for biological under-
standing. One class of models suitable for achieving both goals is the autoencoder.
Autoencoders, and more specifically variational autoencoders (VAEs) [16], simultane-
ously create forward (encoding) and backward (decoding) nonlinear mappings between
the native and latent spaces, enabling insights from a dataset’s low-dimensional
representation to be cast back into the context of the original measurements.

VAEs, in particular β-variational autoencoders (β-VAEs) [17], are generative meth-
ods for dimensionality reduction. Not only do they cast high-dimensional data into a
lower-dimensional latent space, but a measurement is mapped to a distribution rather
than a single point in that latent space, and the relationship between the latent space
and native measurements is explicitly modeled (Figure 1a). Moreover, β-VAEs are
designed to enforce statistical independence between the latent factors they extract.
This compels the resulting latent space to evolve towards a structure in which each
latent dimension corresponds to a different generative factor within the data. In a
biological context, such independent latent dimensions can, for example, report distinc-
tions between biological processes, molecular pathways, or cell types. The generative
nature additionally captures uncertainty, which is crucial when the number of obser-
vations is small, as in most omics experiments. Specifically, we will show that, at least
for IMS, the disentangling properties of the β-VAE tend to give the latent space a
systematic structure that separates signal content from signal strength.

Herein, we develop a β-VAE-based workflow that provides a latent space that not
only captures global structure of complex, high-dimensional IMS data, but also offers
independent, interpretable axes. We also introduce a new algorithm to cast latent
findings back to the original measurement features, in this case for IMS. Although
autoencoders [18,19] and VAEs [20,21] have been successfully applied to IMS, these
approaches do not yield the independent axes we need for interpretation, motivating
a necessary progression towards the β-VAE. Performance of our workflow is demon-
strated using IMS measurements of human kidney acquired as part of the Human
Bio-Molecular Atlas Program (HuBMAP), a large-scale, multi-institutional initia-
tive generating foundational molecular atlases of human tissues at cellular resolution
[22,23]. The ability of our method to reveal, in an interpretable latent space, previously
unknown relationships between molecular measurements and biologically relevant tis-
sue structures underscores its potential as an interpretation and hypothesis-generating
discovery tool.
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2 Results

Our workflow entails four stages (Figure 1b). First, a β-VAE is trained to learn
a probabilistic latent space (Methods–step 1). Its variational aspects capture the
intrinsic variability of the data. Each IMS pixel, i.e., mass spectrum, is cast into a
low-dimensional space where it is represented by a mean location and one associated
standard deviation around it (Figure 1a). Next, we introduce kernel density estimation
(KDE) as a means to reveal structure in this probabilistic latent space and to make
it human-perusable (Methods–step 2). The KDE representation enables users to rec-
ognize areas of high probabilistic density and to segment or ‘carve out’ specific latent
regions-of-interest (ROIs) (Methods–step 3). A high-density ROI can be mapped by
pixel membership to the measurement space’s spatial domain, often delineating key
tissue features and cell types. However, since latent ROIs do not reveal which molec-
ular species are responsible for differentiating their corresponding tissue structures,
mapping latent variation onto the measurement space’s spectral domain is an essen-
tial next step. Our novel latent-traversal algorithm facilitates this by projecting latent
differences onto measurement space features (Methods–step 4), effectively identifying
which molecular species differentiate between user-specified ROIs. Methods section 4
provides details.

We apply our workflow to five distinct datasets (Table 1). In case study 1
(section 2.1), we demonstrate on a human kidney IMS dataset our method’s abil-
ity to disentangle underlying (biology-relevant) latent structures. In case study 2
(section 2.2), we use a synthetic dataset with a pre-specified spatial mixture of spectral
signatures to examine how certain types of measurement variation manifest themselves
in the latent space. The synthetic case study is also used to reinforce an observa-
tion from case study 1: for IMS-like measurements, our workflow tends to learn latent
factors that separate relative from absolute variation, i.e., that separate signal con-
tent from signal strength or signal-to-noise-ratio (SNR). We will refer to such a space
as a signal strength aware latent (SiSAL) space. This observation is consistent with
the previously established spiked mixture model [24], a statistical model for IMS and
hyperspectral imaging measurements that also captures variation in terms of SNR and
signal content. After substantiating our workflow’s ability to capture genuine biological
structure in its latent representation and its tendency towards imposing a SiSAL orga-
nization on that representation, we revisit case study 1’s kidney dataset (section 2.3).
There, we demonstrate our algorithm for casting latent variation back into the original
measurements’ feature space. Finally, we demonstrate the capacity of our method for
hypothesis generation (section 2.4). Using lipid imaging data collected from multiple
patients (case studies 3-5), we differentiate anatomical subdivisions within the kidney’s
proximal tubules (PT) based on their SiSAL-revealed molecular profiles. These case
studies conclude with our latent-traversal algorithm identifying a previously unknown
lipid species driving the distinction between PT segments. The SiSAL Python package
that implements our approach, along with case study 1 materials and the synthetic
data experiment, is provided at https://github.com/vandeplaslab/sisal.
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Fig. 1: (1a) Architecture of traditional variational autoencoder (VAE). (1b) Overview
of the workflow, as applied to an IMS-dataset. The workflow (details in section 4)
delivers three outputs: (i) a point-cloud latent representation of the mass spectra
in the dataset (with uncertainty captured as an accompanying standard deviation
around each mean point); (ii) a rasterized latent representation; and (iii) an order-
ing of measurement space (m/z ) features as a function of their accumulated variance
when traversing from latent region-of-interest (ROI) to ROI. Result (i) captures prob-
abilistic structure underlying the data using a given number of latent dimensions and
disentangles generative factors, (ii) reports probabilistic density and facilitates recog-
nition of specific latent ROIs, and (iii) identifies the most varying ion species between
ROIs, i.e., the molecular species differentiating between the tissue structures corre-
sponding to those ROIs.
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Fig. 2: Workflow applied to case study 1’s human kidney IMS data. (2a) Post-step-1:
the learned generative latent space. Each spectrum is mapped to a mean location and
standard-deviation ellipse in a 2-D plane. (2b) Post-step-2: the density-based represen-
tation obtained through KDE and manually defined segmentations of example latent
ROIs (polygons). (2c) Post-step-3: ROI segmentations from panel 2b copied to the
latent representation of panel 2a, assigning different colors to each ROI-polygon. (2d)
Projecting the latent ROIs back to the spatial domain of the measurement space shows
each ROI corresponding to a different kidney tissue substructure. (2e) A glomerulus-
reporting ion feature, m/z 556.306, correlates to the orange ROI areas (see arrows),
suggesting that the orange ROI-polygon in panel 2c captures (at least) glomerular
variation.

2.1 Mapping molecular measurements to a SiSAL space

In case study 1, we analyzed IMS data from human kidney tissue (HuBMAP VAN0046-
LK-3-45), considering each pixel (i.e., preprocessed mass spectrum) as a separate data
point and using 80% of the total dataset for β-VAE training. Figure 2 shows steps
1 through 3 (Figure 4 depicts step 4). The resulting latent space (step 1) achieved a
>100-fold reduction in dimensionality (212-to-2). However, the probabilistic nature of
its latent representation (depicted using standard-deviation ellipses in Figure 2a) made
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discerning latent structure nontrivial. When KDE was performed (step 2), several dis-
tinct vertical latent density striations became clear (Figure 2b). The density-revealing
view offered by KDE allowed latent regions-of-interest (ROIs) to be ‘carved out’ (step
3). After delineation on the KDE representation (examples in Figure 2b), the ROIs
were copied to the variational representation (Figure 2c). There, the mean latent loca-
tions of pixels and their presence inside ROIs were used to project each latent ROI to
the spatial domain of the measurement space (Figure 2d). Each carving of the latent
space resulted in a spatial segment that delineated a distinct kidney tissue structure.
Figure 2e shows one of 212 ion images in this dataset, namely mass-to-charge-ratio
(m/z ) 556.306, an ion that localized to the glomeruli. The correlation between this
glomerulus-reporting ion and the orange ROI segment (Figure 2d, see arrows) sug-
gested that the orange latent ROI in Figure 2c captured (at least) data variation that
aligns with signals that localize to the glomeruli. Considering the ROIs’ shapes, molec-
ular variation that differentiates tissue structures appears to be captured along the
z1-axis, while a pixel’s SNR seems to be encoded along the z2-axis (see ellipse sizes).
This suggested presence of a SiSAL space, prompting a confirmatory examination in
case study 2.

2.2 Confirming the SiSAL nature of the developed latent space

To better understand how measurements (e.g., IMS spectra) lead to the observed latent
structure, we generated a synthetic dataset from known underlying signatures. This
dataset modeled a spatial domain, with different regions generating distinct qualitative
spectra, and a pixel-specific quantitative signal strength. Figure 3a shows how this
synthetic dataset was constructed. Section 4.3 provides a detailed description.

After applying our approach, a β-VAE-supplied latent space was obtained.
Figure 3b shows the dataset’s latent representation in that space, using a standard-
deviation ellipse per spectrum, emphasizing variance. Figure 3c shows the same
representation, using the mean of each spectrum, emphasizing location. To examine
where different content signatures are encoded in this space, each pixel’s ellipse in
Figure 3b is colored according to the shape, or ‘tissue structure’, it belongs to (color-
matched to Figure 3a). Qualitatively different signatures, i.e., shape contents, were
separated along the z1-axis. Moreover, pixels associated with multiple shapes, f1 and
f2, were lying in between the latent ‘legs’ reporting pure f1 and f2 pixels, hinting
at the z1-axis’ advanced data interpretation potential. To explore where quantitative
strength-reporting variation is encoded, Figure 3c colors each pixel according to its
SNRi-value. This showed that SNR, representing molecular abundance, was encoded
along the z2-axis (lower-signal-strength pixels at the top, high-signal-strength pixels at
the bottom). The link between lower z2-values and increased SNR is also apparent in
Figure 3b: uncertainty-reporting ellipses become smaller towards the bottom and pure-
noise pixels with large variance localize to the top. This synthetic dataset showed that,
without deliberate steering, the β-VAE-produced latent representation tends to disen-
tangle two biologically relevant factors: signal content (reporting molecularly-distinct
tissue structures) is modeled almost independently from signal strength (reporting
molecular abundance). This case study confirms our workflow’s tendency to develop
SiSAL spaces, at least for measurements that fit the signal model in section 4.3.
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For comparison, traditional UMAP and t-SNE dimensionality reduction were
applied to this dataset as well (Appendix F). The results varied strongly with hyper-
parameter choices. However, none of their latent axes cleanly separated signal content
from signal strength, an important property offered by SiSAL spaces.

2.3 SiSAL spaces enable a novel algorithm to reveal
distinguishing molecular features

In Figure 2, the z1-axis separated case study 1’s measurements by relative molecular
content. Subsequently, the KDE-estimated latent density (Figure 2b) allowed latent
ROIs to be defined (Figure 2c). When projected back onto tissue, we discovered that
each latent ROI associated with a particular tissue structure (Figure 2d), presum-
ably corresponding to different functional tissue units (FTUs) that constitute the
renal nephron. This presumption can be independently verified: previous work [25]
established a convolutional neural network that recognizes renal FTUs from autoflu-
orescence microscopy images. Since these HuBMAP IMS-datasets include associated
autofluorescence images, we obtained for each IMS pixel in case studies 1,3-5 an AF-
based FTU label, reporting glomeruli (GL), proximal tubules (PT), distal tubules
(DT), collecting ducts (CD), or thick ascending limb (TAL). If we color our IMS-based
latent representation using these AF-based labels (Figure 4a), our presumption that
different latent density ‘legs’ correspond to distinct FTUs is confirmed. For exam-
ple, according to autofluorescence microscopy, the orange-colored ROI in Figure 2c
consisted nearly exclusively of glomerulus-reporting pixels in Figure 4a.

After independent confirmation that our latent representation captured biologi-
cally meaningful structure and establishing a link to the measurement space’s spatial
domain, the need to connect latent findings also to the measurements’ spectral domain
became compelling: it would facilitate interpretation in terms of molecular features.
To address this challenge, we developed a novel comparative-latent-traversal algo-
rithm (Algorithm 1) that uses the SiSAL structure to identify specific measurement
features that differentiate latent ROIs. This process constitutes the final step of our
workflow (Figure 1b), and is demonstrated in Figures 4b-4e. We illustrated the utility
of Algorithm 1 by investigating heterogeneity found within the green-labeled pixels
(Figure 4a). AF-based labeling considered all green pixels as reporting PT. However,
based on IMS-measurements, our workflow suggested that Figure 4a’s green latent
area contains more than one ‘leg’, implying subgroups within the PT-related pixels. In
fact, Figure 2b’s KDE representation already revealed at least two latent density ‘legs’
or qualitatively different molecular signatures among the PT-labeled pixels. These
findings demonstrate the workflow’s capability to detect known AF-labeled kidney
structures and to further subclassify these structures based on their molecular content.
This approach serves as a valuable hypothesis-driven detection tool for human kidney
tissue exploration. To determine the molecular features responsible for differentiating
these potential subdivisions of PT, we define the black and red ROIs and run Algo-
rithm 1 between them. Figure 4b shows several of Algorithm 1’s latent space traversals,
oriented along the content-differentiating axis of the SiSAL space (here, z1), from left
(black) to right (red). The traversals cover different locations along the SiSAL space’s
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Fig. 3: Workflow applied to case study 2’s synthetic dataset. (3a) Generated using
three spatial ‘tissue structures’: ‘c’ (circle), ‘t’ (triangle), ‘s’ (square). Each shape has
a distinct spectral signature, scaled and averaged to give individual pixel spectra.
(3b) Latent representation with standard-deviation ellipse per spectrum, colored by
its ‘tissue structure’ and ‘noise’ pixels not a member of any. Qualitatively different
signatures (‘c’, ‘t’, ‘s’ legs) separate along the z1-axis. Pixels that combine shapes lie
inbetween the corresponding legs, demonstrating z1’s interpretive power. (3c) Latent
representation with mean location per spectrum, colored by its SNRi. SNR/signal
strength separates along the z2-axis. Also, 3b’s ellipse size, i.e., uncertainty, correlates
with 3c’s SNR, i.e., molecular abundance.
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SNR-reporting axis (here, z2) to avoid accumulating variance specific to only cer-
tain signal strengths. Algorithm 1 ranks the measurement space’s features from most
to least latent variance accumulated (Figure 4c). In this case, the two most varying
molecular features were m/z 1281.800, a glycosphingolipid, and m/z 837.548, a phos-
phatidylinositol (PI). Since the algorithm captures features’ average intensity-change
while traversing, it automatically determines for which ROI each molecular feature
exhibits increased abundance. Specifically, m/z 1281.800 is increased in the black ROI
and decreases towards the red ROI, while m/z 837.548 exhibits opposite behavior.
This SiSAL-provided observation is confirmed when we retrieve the ion images for the
two algorithm-suggested features from the 212 available (Figs. 4d-4e). The minimal
spatial overlap of each uniquely localized lipid species dispels the idea that these lipids
report the same FTU. This instead suggests a genuine, lipid profile-driven subclass of
the PT that is distinct from classifications derived from AF microscopy.

2.4 Biological validation of SiSAL-based findings

Although confirmed in terms of chemical variation, determining whether the sug-
gested PT-subdivision is genuinely biological in nature required further validation. To
avoid dataset- or patient-specific observations, we applied our workflow to three addi-
tional IMS-measurements of human kidney tissues from different patients: HuBMAP
VAN0063-RK-1-41, VAN0042-RK-1-31, and VAN0049-RK-1-35 (case studies 3-5,
respectively). Case study 3’s results are shown in Figure 5, and case studies 4 and
5 are provided in supplementary Figures B1-B4. All three datasets yielded a SiSAL
space (Figures 5a,5b) that clearly separated microscopy-labeled FTUs (Figure 5c),
confirming that similar biology is captured across patients. As in case study 1, all three
KDE representations also suggesed a PT-subdivision (Figure 5d), i.e., substructures
within the green pixels. This consistency across patients, without prior guidance, is a
testament to the robustness and reproducibility of our workflow.

First, we examined within the spatial domain whether the observed PT-subdivision
aligned with known kidney morphology. We used Periodic acid–Schiff (PAS)-stained
microscopy images from the same tissue sections as those used for IMS (Figure 5f). PAS
is a modality used by renal pathologists to ascertain morphology and analyze lesions
that can indicate specific diseases. Using these images, expert kidney pathologists
found that the IMS-defined black ROI is associated with the S3 segment of the PT,
while the red ROI correlates with the remaining S1 and S2 segments of the PT.
Similar observations were seen in case studies 4-5 (Appendix B). Subsequently, our
comparative-latent-traversal algorithm enabled us to explore the spectral domain as
well. Algorithm 1 performed latent traversals between the black and red ROIs along
the SiSAL space’s content-reporting axis (Figures 5d,B1d,B3d), summing up variance
experienced by each measurement space feature while traversing. Hereby, Algorithm 1
effectively uncovers molecular differentiators between these latent ROIs. In descending
order of traversal-accumulated variance, top measurement space features will tend
to be those that change the most between the black and red ROIs, i.e., they report
molecular features that are most different between the S3 and S1+S2 PT segments,
respectively. Case studies 3 and 4 ran the algorithm from the black to red ROI, and
case study 5 from red to black. Assuming biological consistency, in all case studies, the
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same molecular species should come to the forefront, with m/z -features that increase
in case studies 3 and 4, decreasing in case study 5. Figures 5e,B1e,B3e indeed exhibited
this behavior, verifying Algorithm 1’s functioning.

Among the top-14 m/z -features (Figures 5e,B1e,B3e), we observed dataset-specific
differentiators (e.g., m/z 801.677 and 1040.640), but also molecular features that
differentiate S3 from S1+S2 across all three case studies (e.g., m/z 714.509 and
888.621). The former is not unexpected, particularly for human tissue studies, as
each patient is distinct. The common findings, however, demonstrate that our work-
flow can pull nuanced, consistent observations from high-dimensional measurements,
even in the presence of noise and inter-patient variation. Moreso, the molecular fea-
tures suggested by our workflow appear consistent with known kidney biology. For
example, polyunsaturated phosphatidylethanolamine (PE) species are known to reg-
ulate Na+/K+-ATPase activity [26]. Consistent with this, PE(34:2) (m/z 714.509
in Figure 4c,5g,B1,B3), PE(36:4) (m/z 738.508 in Figure 4c,5g,B1,B3), PE(38:5)
(m/z 764.523 in Figure 5g,B3), and PE(38:4) (m/z 766.539 in Figure 5g,B3) were
highly correlated with the S1+S2-region. Phosphatidylserine PS(38:4) (m/z 810.527
in Figure 4c,5g,B3) is even known to exclusively associate with the S1+S2-region.
Besides confirming previous findings, our workflow also proposes new hypotheses. For
example, we found phosphatidylinositol PI(38:4) (m/z 885.548 in Fig 4c,5g,B3) also
differentiated the S3 from the S1+S2 segments of the PT, localizing to S1+S2 PTs.
This colocalization of PI(38:4) with SGLT2 inhibitors in the S1/S2 segments suggests
that PI(38:4) may also influence SGLT2 activity, potentially through the PI3K sig-
naling pathway. More elaborate biological interpretation is provided in supplementary
section E.
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Fig. 4: Workflow’s step 4 applied to case study 1’s human kidney IMS data. 4a
Microscopy labels all green pixels as proximal tubules (PT), but our IMS-based
latent space reveals heterogeneity, suggesting multiple substructures. Figure 2b also
suggests at least two latent density ‘legs’ or molecularly distinct subsets within PT-
labeled pixels. (4b) Guided by this, black and red ROIs were drawn to separate these
substructures. (4c) Algorithm 1 ranks m/z -features by latent variance accumulated
between ROIs, identifying m/z 1281.800 (a glycosphingolipid) and 837.548 (a PI) as
the strongest differentiators, with opposite abundance trends. (4d-4e) Ion images con-
firm distinct localizations of these features with little overlap. This indicates a true
chemistry-driven subdivision of PT, not captured by autofluorescence microscopy.
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Figure 5a, 5b, and 5d report steps 2, 3 and 4. The low-dimensional representation of
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microscopy for biological interpretation. 13



3 Discussion

Unsupervised dimensionality reduction has become key to analyzing complex, high-
dimensional molecular imaging data. Low-dimensional representations provided by,
e.g., PCA or UMAP are commonly used for qualitative visualization or as a basis
for clustering. However, interpreting these representations is oftentimes challenging.
Their latent axes do not necessarily capture biology-relevant aspects, such as molecular
composition or abundance. They also often lack an explicit connection back to the
measurements, making it difficult to identify molecular changes that correspond to
differences in latent location.

Our approach overcomes these challenges by learning a directly interpretable latent
representation of high-dimensional molecular imaging data. Using a β-VAE, we not
only project to a lower-dimensional representation, but also learn a generative model
that explicitly captures uncertainty. This yields a latent space that separates signal
strength from signal content, referred to as a signal strength aware latent (SiSAL)
space. Although unsupervised, the consistently recurring SiSAL structure suggests
that this approach captures fundamental properties of IMS data. This probabilis-
tic exploration is further enhanced by our KDE-based segmentation of latent ROIs.
In human kidney examples, SiSAL spaces not only revealed canonical features, such
as glomeruli, but also previously-unrecognized molecular heterogeneity within proxi-
mal tubule segments. Translating such discovered latent ROIs into molecular features
responsible for differentiating them is crucial for biological interpretation. Therefore,
we introduced a novel comparative-latent-traversal algorithm that converts differences
between latent regions into ranked molecular features. This provides a direct link
between abstract locations in the latent space and specific molecular features, enabling
biologists and clinicians to interpret low-dimensional data representations in terms of
molecular species.

This work opens up new possibilities for analysis in spatial biology. Instead of being
solely descriptive, β-VAE-derived SiSAL spaces provide structured, low-dimensional
data representations that support interpretation, discovery, and hypothesis-generation
in large-scale spatial omics studies.
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4 Methods

4.1 IMS data and preprocessing

An IMS experiment records n pixels, each reporting a full-profile mass spectrum. After
preprocessing and peak-picking, each of these n mass spectra is reduced to a vector of
m scalar ion intensity values, reporting the abundances ofm distinct ion species at that
spectrum’s location in the tissue. We denote an IMS datasetD as a set of n spectra, i.e.,
D = {x(i)}ni=1, each reporting m features, i.e., x(i) ∈ Rm×1. As our workflow requires
training a model, the dataset D is split into a training set D′ and a validation set
D\D′ through random sampling, approaching a 80/20 training/validation split among
the available spectra. This separation helps prevent overfitting during training. We
monitor performance on the validation set, halting training after no improvement for
three consecutive epochs. The data is standardized, i.e., mean-subtracted and scaled
per-feature to a standard deviation of 1, such that

1

n′
∑

x∈D′

x = 0, and

1

n′ diag

(∑

x∈D′

xxT

)
= 1m,

where n′ = |D′| is the number of spectra/pixels in the training set, diag(A) is the
vector formed by the diagonal elements of matrix A, and 1m ∈ Rm×1 is a vector
consisting only of 1s. The standardization is based on the training data D′ to avoid
leakage during model validation. Standardizing the data ensures that each feature is
centered around 0 and has a variance of 1, preventing ion species’ different absolute
intensity ranges from biasing subsequent analysis and ensuring that every feature, and
thus ion species, has a chance to be equally impactful.

4.2 β-VAE-based workflow

The workflow we developed enables a probability-aware (rather than deterministic)
unsupervised exploration of an IMS dataset, learning generative factors that underlie
the measured spectra. In the context of IMS-based characterization of the molecular
content of a tissue section, finding generative factors for a dataset amounts to distin-
guishing different sources of variation within the measurements of the IMS experiment.
Some of these sources of variation can be biological in nature, while others can report
technical variation introduced at the sample preparation or instrumental level. Once
found, these generative factors describe a lower-dimensional latent space in which the
IMS data can be represented compactly. Every empirically acquired mass spectrum
can be represented as a combination of generative factors and thus corresponds to a
specific location within the latent space. Since the latent space is variational in nature,
it allows for a probability density-based interpretation of its structure. This facilitates
the discovery and delineation of high-density latent regions-of-interest (ROIs), which
tend to correspond to specific biological structures in the measured tissue. As such,
the generative latent representation of an IMS dataset will typically tend to report
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and confirm known tissue structure. More importantly, it can also suggest new, hereto
unrecognized structures within the tissue, purely on the basis of the molecular content
reported by IMS. Finally, through a novel comparative-latent-traversal algorithm,
our workflow goes beyond merely suggesting potential tissue structures and instead
characterizes them in terms of the molecular features, i.e., ion species, responsible for
their differentiation from other structures. The algorithm permits for the differences
between ROIs in the latent space to be cast back onto the original measurement space
features, such that the ion species differentiating between generative factor-delineated
tissue structures can be interpreted in both a chemical and a biological context.

The workflow consists of four steps:

• (Step 1) A β-VAE is trained to find a low-dimensional latent space to represent
the provided data, with the dimensionality of the latent space specified by the user.
The variational nature of this latent space, together with the pressure exerted by
the β parameter in the objective function, ensures that the axes describing the space
implicitly encode generative factors for the approximated dataset. Interestingly, we
can observe that the combination of the variational requirements to construct this
space and the nature of mass spectral measurements tends to yield generative factors
that separate out absolute signal strength or SNR from relative signal patterns and
their qualitative differentiation. For brevity, we will refer to such a space as a SiSAL
space going forward. In this paper, we specify latent spaces to have a dimensionality
of two. While any positive integer number of latent dimensions is valid and can be
pursued with the workflow described here, in our case studies we restrict ourselves to
two latent dimensions because it allows for a clear demonstration of SiSAL spaces’
tendency to separate along a qualitative axis and a quantitative axis, while still
being straightforward to interpret by humans in a plot. At least for mass spectral
data, step 1 is demonstrated to be able to yield SiSAL spaces, and we will show
their separating characteristics to be extremely valuable for data interpretation.

• (Step 2) A latent density function is estimated from the β-VAE-supplied latent rep-
resentation, using KDE with a Gaussian kernel. The density representation reports
a rasterized function across the latent space and reveals nuances that are challenging
to observe directly in the level-set and point-cloud-based representations supplied
by step 1.

• (Step 3) As the density-based view into the latent space brings out high-density
areas clearly, delineation of distinctive latent ROIs as polygons becomes possible.
Since the latent density representation is used here as a discovery tool to discern both
known and previously unknown structures within the tissue, the ROI delineation is
performed manually and is human-driven. However, the latent density space offers
opportunities for automated latent ROI determination as well, particularly if a
SiSAL-like structure is also present. Each of the ROIs defines a latent space subarea
corresponding to the probabilistic structure underlying the dataset. However, by
means of the mass spectral measurements (or pixels) that fall within its polygon
when mapped to the latent space, every ROI also implicitly connects to a set of
pixels and, thus, a spatial subarea within the measured tissue. This connection
between the latent space and the spatial domain of the measurement space offers an
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advantageous duality. It is easier to discover and delineate ROIs in the latent space
than in the tissue’s measurement space. The latter, however, reveals which tissue
structures a high-density ROI corresponds to, and in many cases, this will separate
out genuinely biological structures such as morphological tissue areas, functional
tissue units, cell types, and cell states. Furthermore, if the latent space is SiSAL-like,
this can be taken even further: it allows one to make tissue structure delineations
independent of signal strength.

• (Step 4) While step 3 delivers implicit molecular differentiation between different
latent ROIs and their corresponding tissue structures, it does not reveal the measure-
ment features responsible for that differentiation. Since that information is locked
into the combination of the β-VAE encoder and the established latent space, we need
a means of translating latent space differentiation back into differentiation in the
original measurement space. To accomplish this, we develop a novel comparative-
latent-traversal algorithm that utilizes the β-VAE decoder and the qualitative axis
of the SiSAL space to learn the measurement space features, i.e., ion species, most
responsible for the differentiation between two latent ROIs.

Subsequent sections provide more details for each step in the workflow.

4.2.1 Step 1 – Learning a variational latent space by β-VAE

While common manifold learning techniques, such as t-SNE and UMAP, can deliver
latent spaces that represent a given dataset sufficiently well in terms of approximation,
this does not necessarily mean the provided latent space encodes relevant structure.
Furthermore, such latent spaces typically do not provide a concept of uncertainty,
making it difficult to assess how measurement-space variance corresponds to latent-
space variance. In step 1, we seek to address both issues by learning a probabilistic
rather than a deterministic latent space. Instead of seeking latent axes that are merely
dimensionality-reducing, the latent space we strive for is optimized to yield axes that
can serve as generative factors for the measured data, and is shaped to inherently
accommodate uncertainty around the measurements. Specifically, we are interested
in finding an estimate of the underlying probability distribution p(x) that generates
the samples in D. Moreover, we aim to utilize this distribution to explore and draw
meaningful conclusions about the data itself.

The most common approach to obtain p(x) is to use a family of distributions P =
{fθ |θ ∈ Θ}, where θ is a particular set of parameter values from the family’s parameter
space Θ, and to pick the parameter value set that fits the data best. However, for
distribution families with a parameter space that is rather large, it becomes harder to
draw meaningful conclusions about the data directly from those parameters. On the
one hand, when the parameter space grows, it becomes harder to understand what a
particular parameter changes in the overall distribution. On the other hand, with a
small number of parameters like in a (unidimensional) Gaussian family, for example, we
can only capture one mode of the data, which is insufficient for most multidimensional
measurement types.

VAEs [16] circumvent this issue by assuming that the learned distribution can be
as complex as necessary, but that it depends only on a few factors represented by a

17



low-dimensional vector z ∈ Rd with d≪ m. This induces a distribution pθ(x|z) where
θ is the vector of all parameters necessary to parameterize the distribution. With this
model, a sample x(i) from the distribution is obtained by:

1. sampling z(i) from the prior distribution p(z); and
2. sampling x(i) from the conditional distribution pθ

(
x|z(i)

)
.

In our study, we choose a standard normal prior p(z) = N (0, I), where I is the identity
matrix, and a Gaussian likelihood pθ(x|z) = N (µθ(z), I). The mapping µθ(z) : Rd →
Rm denotes the mean of the likelihood function at z and is parameterized by θ. Note
that for complex µθ(z), such as ones provided by neural networks, the density of x

pθ(x) =

∫

z

pθ(x|z)p(z)dz

is not necessarily Gaussian and is generally intractable. This means that we cannot
find an analytical solution to this integral [16]. One could use Bayes’ rule to find the
posterior distribution:

pθ(z|x) =
pθ(x|z)p(z)

pθ(x)
.

However, with the normalizing constant pθ(x) being generally intractable, pθ(z|x) is
also generally intractable. The VAE solves this by additionally learning an approximate
posterior distribution qϕ(z|x) ≈ pθ(z|x), parameterized by ϕ. In this work, we choose
to model qϕ(z|x) using the family of Gaussian distributions with a diagonal covariance
matrix. Thus, qϕ(z|x) = N (µϕ(x),Σϕ(x) = diag(σϕ(x))) where diag(a) denotes the
diagonal matrix holding the entries of the vector a on its diagonal. Forcing a diagonal
covariance matrix ensures that the learned factors z are independent. The subscript ϕ
denotes the set of all parameters needed to parameterize the mean µϕ(x) and variance
σϕ(x) mappings. More concretely, in the context of neural networks, θ and ϕ refer to
the complete set of weights that configure the network.

By learning the functions pθ(x|z) and qϕ(z|x), we create probabilistic mappings
between the native space of the data (Rm) (the measurement space) and the space
of the generative factors (Rd) (the latent space). As qϕ(z|x) encodes the data into
a probabilistic latent space, it is commonly referred to as a probabilistic encoder.
Reciprocally, pθ(x|z) is a mapping from the latent space to the native measurement
space, and it is called a probabilistic decoder. As mentioned above, in this paper we
will focus on the case d = 2. A visual representation of this is shown in Figure 1a.

The VAE objective loss function corresponds to the negative evidence lower bound
(ELBO) [27]. Over all n samples, this is:

fθ,ϕ(x
(1), . . . , x(n)) := −ELBO
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=

n∑

i=1

[
−Ez∼qϕ(z|x(i))

[
ln pθ(x

(i)|z)
]
+DKL

(
qϕ(z|x(i)) || p(z)

)]
,

(1)

where, for two densities p1 and p2, DKL (p1(x)||p2(x)) = Ex∼p1(.)

[
ln
(

p1(x)
p2(x)

)]
is the

Kullback-Leibler divergence between the two densities (see Theorems 2 and 3).

What is the ELBO?

As its name suggests, ELBO is a lower bound on the evidence:

ln
(
pθ(x

(1), . . . , x(n))
)
≥ ELBO.

From (1), we see that fθ,ϕ can be separated in two objective functions:

fθ,ϕ(x
(1), . . . , x(n)) =

n∑

i=1

[
f1,θ,ϕ(x

(i)) + f2,ϕ(x
(i))
]
,

with f1,θ,ϕ(x) = −Ez∼qϕ(z|x) [ln pθ(x|z)] and f2,ϕ(x) = DKL (qϕ(z|x) || p(z)).

Minimizing f1,θ,ϕ(.) forces the distribution qϕ(z|x) to concentrate on the z’s that
maximize pθ(x|z), i.e., it forces qϕ(z|x) to move to z’s that yield a large likelihood
pθ(x|z). This part of the objective function can be seen as the dataset-approximating
part, since the z’s with a large likelihood p(x|z) can be used to retrieve x.

Minimizing f2,ϕ(.) forces the distribution qϕ(z|x) to remain close to the standard
normal prior p(z). This part of the objective function is responsible for the structure in
the latent z-space (and thus also its interpretability). In Theorem 3 of Supplementary
section D, we recall a standard argument for this term forcing the mean and covariance
matrix of qϕ(z|x) to be close to the zero vector and the identity matrix, respectively.
For x(i) ∈ D, this forces a common structure on the posterior distributions qϕ(z|x(i)).

Importance of β in the β-VAE

The β-VAE [17] is a modification of the VAE that adds a hyperparameter β ∈ R+ to
the objective function:

fθ,ϕ,β(x
(1), . . . , x(n)) =

n∑

i=1

[
f1,θ,ϕ(x

(i)) + βf2,ϕ(x
(i))
]
. (2)

With β > 1, we force additional importance onto the term f2,ϕ(.) of the objective
function in (2). This term acts as a regularization term, preventing the latent rep-
resentation z ∼ qϕ(z|x) from wandering too far from the origin and exhibiting too
small a variance (e.g., uninformative factors z). We observe in the Results section
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that when this method is combined with mass spectra of an IMS experiment, it tends
to recurringly yield a common structure of the latent space, which we refer to as a
SiSAL space.

Given that interpretability is a central objective in our work, the extraction of infor-
mative latent axes is essential. Since β-VAE’s β provides a means of enforcing such
axes, we use the β-VAE rather than the standard VAE to establish the probabilistic
latent space for step 1 of our workflow. Practically, step 1 uses the training and
validation datasets specified above to train two neural networks: the probabilistic
encoder, implementing qϕ(z|x) and shown on the left in Fig. 1a, and the probabilis-
tic decoder, implementing pθ(x|z) and shown on the right in Fig. 1a. The specific
architecture of the neural networks is provided in Supplementary section A. During
the training process, a specific β-value will be used to drive the optimization of the
weights. In terms of setting the value of β, its particular value is not pertinent as long
as sufficient pressure is exerted such that informative factors z appear. Specifically,
in all case studies in this work, we manually increased β until an informative latent
space became available, and consistently this space tended towards the qualitative-
versus-quantitative separation characteristic of a SiSAL space. Since subsequent steps
in our workflow carve out ROIs of high latent density, any latent space that sepa-
rates high-density areas sufficiently well to perform that carving is sufficient for the
remainder of our workflow. As such, there is not one particular β-value to consider
as long as we use a value that yields an informative latent space. Nevertheless, the
β in β-VAE is essential as the standard VAE does not necessarily deliver the latent
structure we need for the subsequent steps in our exploratory workflow.

Once ϕ and θ have been optimized, i.e., respectively the encoder and decoder are
trained, we can plot the level sets of qϕ(z|x) for all x ∈ D. Since we chose a Gaussian
distribution for qϕ, its level sets correspond to ellipses. In most visualizations of the
obtained latent space (Figs. 1b, 2a, 3b, 4a, 2b, 5b-5d, B1b- B1d, and B3b-B3d), we use
the ellipse associated with one standard deviation around the mean as a representation
tool:

Nx(z) = {z | (z − µϕ(x))
T
Σ−1

ϕ (x) (z − µϕ(x)) = 1}.

This ellipse allows us to visualize the mean and the standard deviation on the z-axes
for each sample x(i)’s latent distribution {qϕ(z|x(i))}ni=1. The ellipse not only models
sample x(i)’s mean location in the z-space, µϕ(x), but it also reports the uncertainty
around that mean location. This notion of uncertainty answers a key requirement
and is a strong differentiator from other dimensionality reduction approaches, and
we use it specifically in our workflow’s step 4, where Algorithm 1 accumulates this
latent uncertainty when performing a latent traversal between ROIs. An example of
the latent space representation with d = 2 of an IMS dataset, where an ellipse depicts
the uncertainty around a pixel’s mapping into latent space, is shown in Figure 2a.
While some structure is visible, the depicted cloud of ellipses makes interpretation
and delineation of latent ROIs difficult, and step 2 is needed to make this informative
latent space human-perusable.
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4.2.2 Step 2 – Estimating latent density by KDE

After establishing an informative z-space in step 1, we want to draw meaningful insight
from the samples’ latent distributions {qϕ(z|x(1)), . . . , qϕ(z|x(n))} in that space. For
example, step 1’s β-VAE-driven latent space forces independence of its axes, i.e.,
factors. If measured data points x(1), . . . , x(n) share factors, this sharing should be
reflected in their mean locations in the latent space. As such, the organization of
samples’ latent distributions can reveal quite nuanced relationships between those
samples in the native measurement space. However, for datasets with a large n, it is
nontrivial to interpret the structure of that dataset’s latent representation from its
level-set visualization (one standard deviation ellipse per pixel; example in Fig. 2a) or
its point-cloud visualization (one mean location per pixel; example in Fig. 3c). We need
an alternative view into the latent representation that is more effective at conveying
the large amount of information present, that allows for direct human interpretation,
and that facilitates straightforward manual or automated definition of latent ROIs in
step 3. Step 2 pursues such an alternate view of the dataset’s latent representation by
estimating the density throughout the latent space. Specifically, we examine samples
x(1), . . . , x(n)’s predicted means U = {µϕ(x

(1)), . . . , µϕ(x
(n))} with µϕ

(
x(i)
)
∈ Rd (in

our case studies, µϕ

(
x(i)
)
∈ R2) and their distribution.

Since x(i) ∼ p(x) are samples from a distribution, the elements of U can also be
viewed as samples from a distribution h(z). We want to understand the properties of
that distribution. Applying a change of variable (see Theorem 1 of Appendix C), we
find that

h(z) =

∫ d∏

i=1

δ(zi − µϕ,i(x))p(x) dx,

where δ is the Dirac delta function. Even if we knew p(x), this integral would still
be intractable as the mapping µϕ(x) is performed by a neural network. Therefore, we
need an alternative means of estimating the density of the z-space.

One solution is to use kernel density estimation (KDE), a parametric method, to

find an estimate ĥ(z) of the distribution h(z). For a kernel function K, the kernel
density estimate is

ĥ(z) =
1

n

n∑

i=1

KH(z − µϕ(x
(i))),

where H is a symmetric d×d matrix, referred to as the bandwidth of the estimate, and
K is the kernel function. In this work, we choose K to be the multivariate Gaussian
kernel KH(x) = |det(H)|−1/2K

(
H−1/2x

)
. For the bandwidth, Scott’s rule of thumb

[28] suggests picking a diagonal matrix H such that

Hi,i = n−2/(d+4)σ2
i ,
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where σ2
i is the variance of the i-th feature. For all KDE-based latent density

estimations throughout this paper, we use Scott’s rule of thumb.
Once estimated, we can use ĥ(z) to generate a rasterized representation of density

across the latent space. This effectively functions as the alternative view we need
into the latent representation (Figs. 2b, 5a, B1a, B3a). Contrary to the level-set and
point-cloud representations, the density-based visualization reveals which regions in
the latent space carry the most mass and it allows for straightforward delineation of
high-density areas. In the Results section, we demonstrate that these high-density
areas, which in the case of SiSAL spaces and IMS data recurringly take the form
of high-density ‘legs’ oriented along the SNR-axis, tend to correspond to genuine
biological structures within the tissue. This emphasizes the direct interpretability
offered by step 2’s density-based latent representation of the data.

4.2.3 Step 3 – Latent ROI definition & segmentation

Step 3 defines latent ROIs on the basis of the density-based dataset representation
provided by step 2. As mentioned, the connection between features of the measurement
space (i.e., the mass spectral domain) and the latent space is generally intractable: step
4 in our workflow addresses this challenge. However, the connection between locations
in the measurement space (i.e., the spatial domain) and the latent space is more readily
accessible. Pixels x(1), . . . , x(n) map to mean points µϕ(x

(i)), . . . , µϕ(x
(n)) in the latent

space. If a latent ROI has been defined and a pixel x(i)’s latent mean µϕ(x
(i)) falls

within that ROI, we can consider that pixel a ‘member’ of that ROI. Taken together,
the pixels that are members of an ROI implicitly define a spatial segment of locations
within the measurement space that effectively functions as the spatial footprint of this
ROI. It is this spatial mapping that we use to obtain Figures 2d, 5g, B1g, B2, B3g,
and B4.

Defining a latent ROI can be a manual process, where a human investigator draws
a region-of-interest within the z-space, using the dataset’s latent representation as
a guide. ROI delineation can also be performed as an automated process, where an
algorithm uses the dataset’s latent representation to define areas of interest in an
automated way. Furthermore, the ROI definition process can be driven by prior knowl-
edge (e.g., which latent structure corresponds to a certain FTU-of-interest?) or it can
serve open-ended exploration (e.g., which tissue structures can be chemically discerned
within this given IMS dataset?). As such, step 3 of our workflow can be implemented
in different ways to serve either more targeted or more exploratory applications.

In this study, since we focus on open-ended exploration and we want to highlight
potentially unexpected findings that this workflow can help uncover, we implement
step 3 as a manual ROI definition. Specifically, the investigator ‘carves out’ ROIs by
drawing a polygon in z-space, guided by step 2’s KDE-based estimate of high-density
areas. Examples of such manually defined latent ROIs can be found in Figure 2b.
Since the z-space is the same across the different visualizations, the ROI-polygons can
be copied to other representations as needed. An example of such a transfer to the
level-set representation of the same dataset is shown in Figure 2c. Using the spatial
mapping described earlier in this section, we can now find out the spatial footprint of
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each ROI in the original measurement space. This, in turn, allows us to ascertain which
biological tissue structure corresponds to which ROI. An example of this mapping is
shown in Figure 2d. Besides manual ROI definition, there are also clear opportunities
for algorithmic delineation of latent ROIs. In this paper, we focus on manual definition
of ROIs because it allows us to highlight the human interpretability requirement we put
forward at the start of developing this workflow. It also allows us to demonstrate how
the workflow can be used in a human-in-the-loop manner, as a hypothesis-generating
discovery tool whose findings can feed back into the wet-lab for follow-up experiments.

4.2.4 Step 4 – Comparative latent traversal & identification of
measurement-space features as differentiators

Step 4 takes the latent ROIs defined in step 3 and seeks to identify which measurement-
space features differentiate the most between them. In the context of IMS-based
characterization of organic tissue, step 4’s task amounts to taking biological structures
captured by latent ROIs in step 3, and identifying which molecular species (m/z -
features) are differentiators between those biological structures. Sometimes step 4’s
output will confirm prior biochemical knowledge on the tissue at hand, sometimes step
4 will reveal a hereto unknown molecular differentiator. An example of the latter is
shown in the Results section, revealing lipid species that differentiate S3 from S1+S2
PT segments in the human kidney.

As mentioned in the previous section, the link between the latent space and features
in the measurement space (i.e., the mass spectral domain) is generally intractable.
Therefore, we employ an alternative means of inferring differentiating features in
the measurement space, namely through latent traversals. For this, we developed a
modified latent traversal algorithm.

Latent traversals involve moving in unitary directions within the latent space and
assessing concurrent changes in reconstruction. Since the factors in z are (nearly) inde-
pendent, we can move in unitary directions by changing only one factor at a time.
Latent traversals were already motivated in [17]. Here, we modify them to only tra-
verse between two latent ROIs, making step 4’s results focus only on differentiators
between the two corresponding tissue structures. Furthermore, we leverage the inher-
ent separation of strength-versus-content offered by the SiSAL space to remove the
influence of signal strength or SNR from the analysis. This is accomplished by letting
traversals take place along the content-separating axis of the SiSAL space (specified to
the algorithm by a unitary vector e), effectively amplifying content-related changes in
step 4’s results. It also entails performing ntr distinct traversals (in our case, ntr = 50),
each starting from a different random location along the signal strength-encoding
axis of the SiSAL space, to attenuate SNR-related changes in step 4’s results. Over-
all, our comparative-latent-traversal algorithm computes the signed variance for each
measurement space feature as we traverse from ROI to ROI.

Algorithm 1 describes our modified procedure. It requires two latent regions-of-
interest r1 and r2. We take small steps in unitary directions to move from r1 to r2
(here, along the content-separating axis). At each step, we use our location in z and
the decoder network, pθ(x|z), to sample a potential observation x in the native mea-
surement space. We then compute the variance of these reconstructed observations,
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i.e., mass spectra, to identify the m/z -features that change the most. Examples of this
algorithm’s output are shown in Figures 4c, 5e, B1e, and B3e.

Algorithm 1 Comparative latent traversal

Require:
ntr ≥ 0← number of traversals
r1 ← region-of-interest 1
r2 ← region-of-interest 2
e← unitary vector between the ROIs
t← step size in traversal
kmax ← maximum number of steps
for i ∈ {1, . . . , ntr} do

Sample u.a.r. z ∈ r1
k = 1 (Current step number)
zk ← z + kt · e
while zk /∈ r2 & k ≤ kmax do

k ← k + 1
zk ← z + kt · e
xk ∼ pθ(x|zk)

end while
X = {x1, x2, . . . , xk}
Vi ← variance per m/z bin in dataset X

end for
V =

∑ntr

i=1 Vi

Order the variances in descending order

4.3 Synthetic dataset

For case study 2’s synthetic dataset, we design an image that contains a set of three
overlapping shapes F = {circle, triangle, square} (Figure 3a, top row), with I the
set of pixels in that image. The shapes represent different tissue structures reporting
different molecular content. For each shape f ∈ F , Pf ⊂ I is the set of pixels that are
part of shape f . Since the shapes overlap, ∩f∈FPf ̸= ∅. For every shape f , a coefficient
value is assigned to pixel i, representing that pixel’s signal strength or SNR:

αf,i =

{
|c| if i ∈ Pf

0 otherwise
,

where c ∼ N (µc, σ
2
c ). These spatial domain descriptions are shown in Figure 3a, middle

row. Every shape f also has a unique deterministic spectral signature sf ∈ Rm
+ of norm

one (Figure 3a, bottom row), with m the number of features per spectrum. Given the
spatial and spectral signatures for each shape, a spectrum x(i) is mixed for each pixel
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i ∈ I:

x(i) =
1

Ci

∑

f∈F
αf,i sf + εi,

where Ci =
∑

f∈F |Pf ∩ i| is the number of shapes that pixel i is part of, and ε ∼
N (0, σ2

εIm) is a Gaussian noise perturbation. The distribution parameters for c and
ε are provided in Appendix 2.2. If pixel i is only part of a single shape f , its mass
spectrum x(i) = αf,i sf + εi and its SNR measure is

SNRi =
∥αf,i sf∥2
E [∥εi∥2]

=
α2
f,i

mσ2
ε

∝ α2
f,i.

Thus, for the single-sf case, pixel i’s SNR is proportional to the abundance coefficient
α2
f,i.

4.4 Case studies

Dataset description

Case
study
number

Dataset name DOI Link Associated
figures

1 VAN0046-LK-3-45 doi:10.35079/HBM794.JRXQ.455 HBM794.JRXQ.455 Fig. 2,4

Additional mask
information

doi:10.5281/zenodo.17910325 Zenodo Fig. 2,4

2 Synthetic dataset - - Fig. 3

3 VAN0063-RK-1-41 doi:10.35079/HBM946.ZHFC.683 HBM946.ZHFC.683 Fig. 5

4 VAN0042-RK-1-31 doi:10.35079/HBM437.BGCD.226 HBM437.BGCD.226 Fig. B1,B2

5 VAN0049-RK-1-35 doi:10.35079/HBM286.ZZNV.536 HBM286.ZZNV.536 Fig. B3,B4

Table 1: Overview of case studies and corresponding datasets. All human kidney datasets are
part of the Human Bio-Molecular Atlas Program (HuBMAP) [22]. Additional information,
such as FTU masks, is made available as a Zenodo repository. The SiSAL Python package
is available at: https://github.com/vandeplaslab/sisal.
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Nomenclature

β-VAE β-variational autoencoder
m/z mass-to-charge-ratio
AF autofluorescence
CD collecting ducts
DT distal tubules
ELBO evidence lower bound
FTU functional tissue unit
GL glomeruli
HSI hyperspectral imaging
HuBMAP Human Bio-Molecular Atlas Program
IMS imaging mass spectrometry
KDE kernel density estimation
NMF non-negative matrix factorization
PAS Periodic acid–Schiff
PCA principal component analysis
PT proximal tubules
ROI region-of-interest
SiSAL signal strength aware latent
SMM spiked mixture model
SNR signal-to-noise-ratio
t-SNE t-distributed stochastic neighbor embedding
TAL thick ascending limb
UMAP uniform manifold approximation and projection
VAE variational autoencoder
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Supplementary A Architecture and
hyperparameters

A.1 Model Architecture

Table A1 shows the VAE architecture for the different datasets. For all the datasets,
we stopped training after no improvement on the test set for three epochs.

Dataset Optimiser Architecture

Kidney Adam Input 212× 1

Encoder Conv1d 10× 10 (stride 2, padding 1), ReLU activation

lr=0.001 Conv1d 10× 9 (stride 2, padding 1), ReLU activation

FC 200, ReLU , FC 2 ∗ d

weight decay Decoder FC 200 ReLU , FC 490, ReLU, View(10,49)

=0.0001 ConvTranspose1d 10× 9 (stride 2, padding 1) , ReLU activation

ConvTranspose1d 1× 10 (stride 2, padding 1)

Synthetic Same as for kidney

Table A1: Details of model architectures. Conv1d(out channels, kernel size). Use of batch
normalization

A.2 Hyperparameter choices for section 2.2

The distribution parameters of c ∼ N (µc, σ
2
c ) and ε ∼ N (0, σ2

εIm) were:

• µc = 500
• σc = 500
• σε = 10

Supplementary B Additional datasets

We repeated the experiment of section 2.4 on two additional datasets from the
HuBMAP project [22] (VAN0042-RK-1-31 and VAN0049-RK-1-35 in negative mode,
see Table 1). Figures B1 (VAN0042-RK-1-31) and B3 (VAN0049-RK-1-35) highlight
the same subdivision between proximal tubules. The accompanying PAS microscopy
images also suggest in these additional cases that the black color corresponds to the
S3 PT segment, while the red color corresponds to S1+S2 PT segment. For both
datasets, full sets of the latent ROIs’ spatial segments are shown in Figures B2 and
B4, respectively.

Note that, in Figure B1b, our workflow additionally suggests the presence of a
yellow ‘leg’ that is not oriented along the SiSAL space’s SNR-reporting axis. Instead,
its pixels seem locked at a fixed amount of (low) signal strength. When we cast the
yellow ROI to the spatial domain using the method described in step 3, leading to
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Figure B2, it becomes clear that the yellow ROI corresponds to observations describ-
ing a hole in the tissue, capturing measurements acquired off-tissue and at very low
intensity. Besides correctly projecting these measurements to the low-SNR area of the
latent space, our workflow also avoids putting these measurements close to any of the
genuine biological ‘legs’ in Figure B1b, maintaining the strength-versus-content sepa-
ration provided by this SiSAL space. This example demonstrates how our workflow,
besides exploring biological tissue structure, can also be used to reveal undesirable
technical variation or noise variation for removal.
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(g) PAS microscopy with ROI labels

Fig. B1: Workflow applied to case study 4’s human kidney data (VAN0042-RK-1-31).
Figure B1a, B1b, and B1d report steps 2, 3 and 4. The low-dimensional representa-
tion of this dataset demonstrates a SiSAL structure: elongated abundance-reporting
striations along one axis and the other axis separating these signatures as chemically
distinct. Figure B1c colors the latent space using microscopy-based FTU labels, inde-
pendently confirming that latent ‘legs’ correspond to different biological structures.
The black and red ROIs are defined to examine subdivisions among green PT-reporting
pixels. Our comparative-latent-traversal algorithm reveals (B1e) which m/z -features
vary most between these ROIs. In B1f and B1g, we map our finding to PAS microscopy
for biological interpretation.
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Fig. B2: Regions-of-interest from B1b projected onto PAS microscopy
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Supplementary C KDE approximated distribution

Theorem 1 (Densities change of variables). Let X ∈ Rm be a random variable with
density fX(z). Let µ : Rm → Rd be a mapping with d ≤ m. Then, Y = µ(X) follows

the density fY (y) =
∫
x
δ(y − µ(x))fX(x)dx, with δ(y) =

∏d
i=1 δ(yi), the product of

Dirac delta functions.

Proof. Let Z ∈ Rd be a random variable with density fZ(z) =
∏d

i=1 δ(zi), which is a
constant vector always equal to 0. Then, we look for the distribution of the random
vector Y = µ(X) + Z.
The mapping h : Rm+d → Rm+d such that h(z, x) = (µ(x) + z, x) being a bijection,
we can define its inverse:

h−1(y, x) = (y − µ(x), x) y ∈ Rd, x ∈ Rm.

The Jacobian of h−1 corresponds to

Jh−1(y, x) =

[
Id −Jµ(x)

0m×d Im

]

and has a determinant of 1. We thus have:

fY,X(y, x) = fZ(y − µ(x))fX(x).

Integrating over x gives the desired marginal density of y.

Supplementary D Kullback–Leibler divergence

The following theorem shows a closed form solution for the Kullback-Leibler diver-
gence of two Gaussian distributions. A proof can be found in Section 9 of [29].

Theorem 2 (Kullback–Leibler divergence of two Gaussian distributions). Let P and
Q be the distributions of two multivariate Gaussian’s N (µ1,Σ1) and N (µ2,Σ2). We
consider d-dimensional distributions, meaning that µ1, µ2 ∈ Rd and Σ1,Σ2 ∈ Rd×d.
The Kullback–Leibler divergence between P and Q corresponds to:

DKL(P ||Q) =
1

2

(
tr(Σ−1

2 Σ1)− d+ (µ2 − µ1)
TΣ−1

2 (µ2 − µ1) + ln

( |Σ2|
|Σ1|

))
.

Theorem 3. Let P a d-multivariate Gaussian distribution N (µ,Σ = Diag
(
σ2
)
) with

σ ∈ Rd, and Q be a d-standard unitary Gaussian distribution N (0, I). Then, the
f(µ, σ) = DKL(P ||Q) is a convex function on Rd × Rd

+, reaching its minimum for
µ⋆ = 0 and σ⋆ = 1d.

Proof. The Kullback-Leibler divergence between P and Q corresponds to:

f(µ, σ) = DKL(P ||Q)
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Fig. B3: Workflow applied to case study 5’s human kidney data (VAN0049-RK-1-35).
Figure B3a, B3b, and B3d report steps 2, 3 and 4. The low-dimensional representa-
tion of this dataset demonstrates a SiSAL structure: elongated abundance-reporting
striations along one axis and the other axis separating these signatures as chemically
distinct. Figure B3c colors the latent space using microscopy-based FTU labels, inde-
pendently confirming that latent ‘legs’ correspond to different biological structures.
The black and red ROIs are defined to examine subdivisions among green PT-reporting
pixels. Our comparative-latent-traversal algorithm reveals (B3e) which m/z -features
vary most between these ROIs. In B3f and B3g, we map our finding to PAS microscopy
for biological interpretation.



Fig. B4: Regions-of-interest from B3b projected onto PAS microscopy

=
1

2

[
tr (Σ) + ∥µ∥2 − ln(|Σ|)− d

]
from Theorem 2.

=
1

2

d∑

i=1

µ2
i + σ2

i − lnσ2
i − 1

The Hessian matrix of f corresponds to:

Hf (µ, σ) =

[
Id 0d×d

0d×d Diag(1 + 1/σ2
1 , . . . , 1 + 1/σ2

d)

]
.

Hf ≻ 0, proving that f is convex.
The gradient of f is:

∇f(µ, σ) =




µ

σ1 − 1/σ1

. . .

σd − 1/σd




. Setting the gradient to 0 gives us the claimed µ⋆ and σ⋆.
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Supplementary E Biological interpretation of
molecular differentiators

In the nephron, the PT is exclusively responsible for glucose reabsorption from
glomerular filtrate. High capacity, low-affinity SGLT2 is expressed in the early S1+S2
region of the PT, while low-capacity, high-affinity SGLT1 is found in the late S3 PT
segment [30]. While both are regulated by the activity of the Na+/K+ ATPase, which
establishes the necessary intracellular sodium gradient to drive the uptake of glucose
from the lumen, the Na+ and glucose microenvironment of S1+S2 is vastly different
from S3. S1+S2 reabsorbs 90% of glucose, and active Na+ transport dominates in
this segment. The stoichiometry of SGLT2 is 1:1 Na+ to glucose [30]). The remain-
ing glucose is absorbed in S3, where paracellular Na+ uptake is significantly higher
and luminal to basolateral Na+ movement is evenly distributed across passive and
active transport mechanisms [31]. Here, the ratio is 2:1 Na+ to glucose. Clearly, the
ability of Na+/K+ ATPase to modulate the sodium gradient necessary to drive the
influx of glucose is crucial, particularly in the S1+S2 region where SGLT2 activity
is high and the Na+ electrochemical gradient is primarily driven by cellular pumps,
including Na+/K+ ATPase. Polyunsaturated phosphatidylethonalamine (PE) species
have previously been shown to regulate Na+/K+ ATPase activity [26]. Consistent
with this, PE (34:2) (m/z 714.509 in Fig. 4c, 5g, B1, B3), PE(36:4) (m/z 738.508 in
Fig. 4c,5g,B1,B3), PE(38:5) (m/z 764.523 in Fig. 5g, B3), and PE(38:4) (m/z 766.539
in Fig. 5g, B3), were highly correlated with the S1+S2 region. Additionally, PE(38:4)
(m/z 766.539) has been shown to directly stimulate Na+/K+ ATPase activity [26].
The ability to fine-tune the activity of Na+/K+ ATPase is critical in the regulation of
glucose uptake, and the phospholipid environment of Na+/K+ ATPase is a key con-
tributor to pump activity. In addition to Na+/K+ ATPase pump activity, the SGLT
transporters themselves are regulated by protein kinases and the phospholipid content
of membranes. Studies have shown that protein kinase C (PKC) can upregulate the
membrane concentration of SGLT1, but the mechanism for this is unknown, and it is
unclear if this is a direct effect of phosphorylation [32]. In contrast, SGLT2 was shown
to be phosphorylated by PKC under conditions of insulin stimulation, which induces
increased SGLT2 activity [32]. While PKC is recruited to rigid membrane regions
where SGLT2 are localized, its activation is inhibited. Alleviation of PKC inhibition
is facilitated by phosphatidylserine (PS) binding to PKC [33]. PS(38:4) (m/z 810.527
in Fig. 4c, 5g, B3) is exclusively associated with the S1+S2 region where SGLT2 is
expressed. Enrichment of this lipid species may be fundamental to PKC activation,
leading to SGLT2 phosphorylation and upregulation in S1+S2. Finally, the phospho-
lipid environment itself has been shown to have direct effects on the regulation of
SGLT1. Negatively charged lipids were shown to inhibit SGLT1 with phosphatidyli-
nositol (PI) being the most potent inhibitors [34]. However, downregulation of SGLT2
was not observed to be linked to changes in PI lipid content [35]. PI(38:4) (m/z 885.548
in Fig 4c, 5g, B3) is localized to S1+S2. This colocalization of PI(38:4) with SGLT2
inhibitors in the S1/S2 segments suggests that PI(38:4) may also influence SGLT2
activity, potentially through the PI3K signaling pathway. Interestingly, PI(38:4) is the
most common building block for PIP2 generation [36], and PIP2 has been implicated
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in endocytosis of the SGLT1 protein, removing it from the plasma membrane [37].
Together, these inhibitory effects of PI on SGLT1 may explain its exclusion from the
S3 segment.

Supplementary F Other dimensionality reduction
techniques

In section 2.2, we consider the interpretability of the SiSAL space. For reference,
this section shows the results one gets when applying t-SNE (Figure F5) or UMAP
(Figure F6) to that same synthetic dataset (Figure 3a). We used well-established
implementations of t-SNE [38] and UMAP [39], and we explored a broad variety of
hyperparameter settings to avoid drawing parameter-specific conclusions. Both dimen-
sionality reduction techniques seem able to separate dominating components in the
data, but their latent axes do not facilitate direct structural interpretation of either
the signal content or the SNR.
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(a) t-SNE latent spaces, colored to report tissue structure membership. This shows where
signal content is encoded.

(b) Same t-SNE latent spaces as above, colored to report SNRi. This shows where signal
strength is encoded.

Fig. F5: Low-dimensional representations of the synthetic dataset of Figure 3a
obtained by t-SNE. Different choices of hyperparameters perplexity and early exager-
ation are explored to avoid parameter-specific observations. Figures 3b and 3c
demonstrate that the SiSAL space captures and encodes signal content and signal
strength along distinct latent axes. In the t-SNE-based latent spaces, such separation
along latent axes is not observed, demonstrating the structural nature and inter-
pretability of the SiSAL space compared to traditional methods.
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(a) UMAP latent spaces, colored to report tissue structure membership. This shows where
signal content is encoded.

(b) Same UMAP latent spaces as above, colored to report SNRi. This shows where signal
strength is encoded.

Fig. F6: Low-dimensional representations of the synthetic dataset of Figure 3a
obtained by UMAP. Different choices of hyperparameters number of neighbors and
minimum distance are explored to avoid parameter-specific observations. Figures 3b
and 3c demonstrate that the SiSAL space captures and encodes signal content and
signal strength along distinct latent axes. In the UMAP-based latent spaces, such sep-
aration along latent axes is not observed, demonstrating the structural nature and
interpretability of the SiSAL space compared to traditional methods.
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