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Motivation – Synthetic Experiment Reveals Higher Noise Tolerance

Imaging mass spectrometry (IMS):

• IMS is a molecular imaging technique that combines spatial mapping with mass spectral analysis.
• IMS o�ers detailed chemical maps of organic tissue samples, measuring the spatial distributions of hundreds 

of molecular species concurrently.
• Each pixel records a full mass spectrum or m/z pro�le, and prior labeling of compounds is not required.

Challenges:

1. IMS experiments can acquire vast amounts of spatially resolved data.
2. IMS data can be noisy.

Modeling IMS data using the Spiked Mixture Model:

• Every observation or pixel      in an IMS dataset is modeled as a randomly scaled representative of a biological 
signature, subpopulation, or spike         .

•      is the random scaling factor of observation     :
•      is the random noise of observation     :
•      is a latent categorical variable indicating which spike          is underlying     :

Recovering signals underlying noisy IMS measurements (and clustering them):

• Given noisy observations                    , �nd        underlying subpopulations            

i.e., �nd parameters of interest: 

that deliver a maximum likelihood estimate (MLE) for the given data:
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Goal:  Compare SMM’s performance to the more classical Gaussian Mixture Model (GMM)-based recovery.

Synthetic dataset:

• Number of subpopulations K = 3, so the goal is to recover underlying signals x1, x2, and x3.
• Number of noisy measurements N = 1500, with noise variance σ2, and two m/z bins per signal (d = 2 for 

visualization).
• Two noise levels explored:   ◦   Low-noise regime: σ2 = 0.01 (top panel) 

           ◦ High-noise regime: σ2 = 0.5 (bottom panel)
Observations:

• In the low-noise regime:  ◦ the signal recovery performance of SMM and GMM appear to be similar.
• In the high-noise regime: ◦ the accuracy of both methods decreases, but GMM only �nds one signal, x1, and     

            produces a third estimate, which is a mixture of two ground truth signals.
           ◦ on the other hand, SMM delivers three clearly separate directions without the   
            ’collapse’ of estimates we that see in the GMM case.

Conclusions:
Under low-noise conditions, SMM performs comparably to GMM,

but in high-noise regimes, where robust computational methods are most needed,
SMM substantially outperforms GMM. 

Overall, the SMM o�ers a means of making algorithms aware of structures and perturbations that naturally
arise in MS measurements, enabling advanced noise resilience and aiding discovery of biological patterns 

that might lie hidden in the noise.

Goal:  Use SMM to recover underlying molecular signatures from real-world noisy IMS 
measurements of a rat brain tissue section, and to implicitly cluster the mass spectra, i.e., 
segment the tissue section into areas of similar chemical composition. Furthermore, we 
compare SMM’s clustering results to ones given by traditional methods such as GMM 
and k-means clustering.

Rat brain IMS dataset:
A transverse rat brain section was measured using a timsTOF FleX (Bruker Daltonics) in 

QTOF mode across m/z 400-2,000, using a 10-µm pixel size and yielding 572,832 
individual spectra. Spectral alignment was performed to correct for drift along the m/z 
domain. After alignment and calibration, an average mass spectrum based on all pixels 
in the dataset was computed. The average spectrum was peak-picked, 843 peaks were 
detected, and their corresponding ion intensities were retrieved.

Comparison of clustering results by SMM, GMM, k-Means Clustering:Low-noise regime: σ2 = 0.01

High-noise regime: σ2 = 0.5
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Custom EM algorithm for SMM-based recovery and clustering:

• MLE is intractable in this case. 
• We developed an Expectation-Maximization (EM)

approach, customized for SMM, to �nd a candidate MLE that:
▪ is guaranteed to converge to a local maximum; and
▪ does not require matrix inversion of large matrices.

Our custom EM algorithm is described in
https://doi.org/10.48550/arXiv.2501.01840.
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The Spiked Mixture Model (SMM) Results – Clustering of Rat Brain IMS dataset

Observations:

• SMM-based clustering 
recovers underlying 
molecular signatures from 
noisy IMS measurements 
of rat brain tissue.

• Recovered spikes are 
shown to align with known 
biological structures.

Observations:

• Estimated responsibility variables segment the tissue 
according to molecular content. SMM retrieves histological 
patterns missed by other methods.

• SMM found subdivisions of cerebral cortex layers (e.g., 
molecular, granular, pyramidal, and multiform) that are known 
to align parallel to the surface of the brain, but that were missed 
by GMM.

• SMM delivered sharper delineation of anatomical structures 
(e.g., white matter, molecular layer, and granule cell layer) and 
exhibited less susceptibility to noise than k-means clustering.

Spectral perspective

Spatial perspective
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